Analysis of In Situ Fluorescent Probes for Rapid Screening of Epidermal Growth Factor Receptor and KRAS Mutations in Exfoliated Cells from Pleural Fluid in Patients with Lung Cancer

Author:

Zhou Yaozheng1,Wang Qing2,Xie Linxia2,Lu Sha2

Affiliation:

1. Department of Respiratory and Critical Care, Suizhou Hospital, Hubei University of Medicine, Suizhou, 441300, Hubei, PR China

2. Department of Respiratory Medicine, Xi’an International Medical Center Hospital, Xi’an, 710100, Shanxi, PR China

Abstract

To improve the detection rate of non-small-cell lung cancer (NSCLC) exfoliated cells in pleural effusion, we designed nano-MSN-DNA fluorescent probes that could efficiently bind to mutated oncogenes in tumor cells. Mutated NSCLC cells could be detected directly by fluorescence intensity through confocal microscopy without using conventional polymerase chain reaction (PCR). In addition, the DNA probe was highly permeable in NSCLC cells and was stable in methanol at low temperatures. Using the nano-MSN-DNA fluorescent probes, we detected a significantly higher incidence of epidermal growth factor receptor (EGFR) and KRAS mutations in NSCLC pleural effusions and cells compared to those in normal patients, especially in lung adenocarcinoma cells. EGFR and KRAS mutations were more likely to occur in poorly differentiated and clinically advanced NSCLC, and the mutations enhanced tumor aggressiveness, leading to poor prognosis. The nano-MSN-DNA fluorescent probe was significantly more sensitive than Wright staining for screening pleural fluid exfoliated lung squamous carcinoma and adenocarcinoma cells. Thus, the nano-MSN-DNA fluorescent probe shows great potential for screening exfoliated cells from pleural fluid of patients with lung cancer and guiding targeted therapies.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3