A Novel Silica Hybrid Nanoparticle with Zwitterion-Functionalized Polymer Chains for Highly Efficient N-Glycan Enrichment

Author:

Pan Yiting1,Bai Haihong2,Zhang Guocheng1,Liu Wei3,Wu Yanqi4,Chen Hui5,Tian Ying1,Yang Zhenqi1,Feng Duan1,Liu Jiaqi1,Wu Dan1

Affiliation:

1. Beijing Institute of Metrology, Beijing, 100029, PR China

2. Phase I Clinical Trial Center, Beijing Shijitan Hospital of Capital Medical University, Beijing, 100038, PR China

3. Department of Pharmacy, Beijing You’an Hospital of Capital Medical University, Beijing, 100069, PR China

4. State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, PR China

5. Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, PR China

Abstract

N-Glycosylation is one of the most common and important protein posttranslational modifications. Structural aberrations of the N-glycans branching from glycoproteins are closely related to various disease occurrences and progressions. Therefore, global systematic identification of disease-related N-glycans not only largely facilitates the understanding of their cellular functions but also promotes the development of new diagnostic and therapeutic biomarkers. However, N-glycans are low in abundance and hydrophilic, thereby hindering high-throughput, and large-scale N-glycan analysis and N-glycoproteome research. Here, a zwitterion-functionalized polymer brush-grafted silica hybrid hydrophilic material (poly-SBMA-S) was fabricated by in situ growth of polymeric [2-(methacryloyloxy)ethyl]dimethyl(3-sulfopropyl)ammonium hydroxide (SBMA) chains on porous silica particles through a surface-initiated atom transfer radical polymerization technique, and it was used as a new stationary phase for highly selective N-glycan enrichment. Human plasma demonstrated 64 N-glycans due to the densely packed polyzwitterion chains and the significantly increased coverage of hydrophilic binding sites, demonstrating the high potential of the new hydrophilic matrix in the profiling and analysis of N-glycans and other hydrophilic targets.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3