Affiliation:
1. Institute of Bioengineering, Hangzhou Medical College, 182 Tian Mu Shan Road, Hangzhou 310013, Zhejiang Province, China
Abstract
As is known to all, the biological characteristics of two-dimensional (2D) cultured cells are quite different from those in vivo, so the 2D screening model can no longer meet people’s needs. With the development of tissue engineering, people are committed to developing 3D tissue
models that can better reflect the biology in vivo, and tend to be mass and miniaturized. In this study, three-dimensional (3D) bio-printing was used to develop an appropriate 3D model for screening sensitive anti-lung cancer drugs in vitro. A549 lung cancer cells were mixed with 8% sodium
alginate and 5% gelatin as bio-printing ink to fabricate a cell-laden hydrogel grid scaffold structure. The sensitivity of the printed 3D model to drugs was evaluated with eight anti-tumor traditional Chinese medicines. A fluorescent live/dead staining was carried out at different time to
assess the cell survival rate in the 3D scaffolds. MTT assay was used to determine the inhibitory rate of eight antitumor traditional Chinese medicines on A549 cell proliferation in 3D-printed lung tumor models and conventional 2D culture models.
Publisher
American Scientific Publishers
Subject
Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献