Effect of Transforming Growth Factor Beta (TGF-β) on the Degeneration of Intervertebral Discs by Regulating Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells/Mammalian Target of Rapamycin (NF-fcB/mTOR) Signaling Pathway

Author:

Song Mengxiong1,Zhang Chi1,Zhang Yongtao1,Chao Wang1,Zhang Lin2,Xu Derong1,Zhu Kai1,Li Guanghui1,Zhao Han3,Ma Xuexiao1

Affiliation:

1. Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China

2. Department of Clinic Medicine, Qingdao University, Qingdao, Shandong, 266003, China

3. Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China

Abstract

Intervertebral disc degenerative disease (IDDD) is common in orthopedics. TGF-β involves in inflammation and tissue repair. But its role in IDDD remains unclear. IDDD patients and normal intervertebral disc nucleus pulposus tissues were collected. IDDD was divided into prominent group and prolapse group. IDDD nucleus pulposus cells were isolated and divided into control group, TGF-β agonist group and TGF-β inhibitor group followed by analysis of cell proliferation by MTT, cell apoptosis by flow cytometry BALP and OC expression by Real time PCR, NF-/<B/mTOR signaling protein expression by Western blot as well as IL-1 and IL-6 secretion by ELISA. Compared with normal group, TGF-β mRNA and serum level in patients with IDDD was significantly decreased (P < 0.05), with more significant changes in prolapse group (P < 0.01). Pfirrmann grading scores were negatively correlated with TGF-β serum level (P < 0.001). TGF-β agonists can significantly promote cell proliferation, inhibit apoptosis, upregulate BALP and OC expression, inhibit NF-κB expression, increased p-mTOR level and decrease IL-1 and IL-6 secretion (P < 0.05). All these changes were significantly reversed by TGF-β inhibitors (P < 0.05). TGF-β expression in IDDD is reduced and associated with disease severity. Promoting TGF-β expression can inhibit inflammatory factors secretion, promote BALP and OC expression and cell proliferation, and inhibit the degeneration of intervertebral discs by regulating NF-/<B/mTOR signaling.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3