Design and Fabrication of Microfluidic-Based 3D Microphysiological Systems for Studying Cell Migration and Invasion Behaviors

Author:

Wang Xi1,He Qingling1,Li Qianyin1,Li Yuan2,Suresh Shoma3,Krishnan Sasirekha3,Ramalingam Murugan3,Lv Xiaoyan4,Ni Yilu1

Affiliation:

1. The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China

2. Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Yongchuan District, Chongqing, 402160, China

3. Biomaterials & Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

4. The Department of Dermatology, West China Hospital, Sichuan University, #37 Guoxuexiang, Wuhou District, Chengdu, 610041, China

Abstract

The cell migration and invasion behaviors play pivotal roles in tissue regeneration. For the skin repair process, a directed inflammatory response that regulates fibroblasts is critical for efficient wound healing. In this study, the authors present the design and fabrication of a microfluidic-based three-dimensional (3D) microphysiological system and how it impacts in controlling fibroblast migration and invasion under the induction of differently polarized macrophages. The microfluidic device had two chambers on opposite sides of a 1 mm micochannel, providing directed induction and sufficient width for long-term observation. The test cells could be seeded with or without matrix gel, cultured in a 2D or 3D microenvironment according to experiment settings. The microchannel allowed for any sorts of matrix filling and was on-demanding for continuous surveillance. Herein, our microfluidic device reserved the advantages of traditional methods using transwell chamber or scratch wound healing assay. In addition, it even came with more superiority such as retrievability, dynamic observation, and 3D environment simulation. The migration and invasion pattern of NIH3T3 modulated by RAW264.7 macrophages in different polarization status was demonstrated as an example. The results of the migration assay corresponded with that of the proliferation and gene expression experiments, verifying that our device was fully capable of restoring in vivo microenvironment and presenting cellular motility behaviors.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3