Magnetohydrodynamic Time Dependent 3-D Simulations for Casson Nano-Material Configured by Unsteady Stretched Surface with Thermal Radiation and Chemical Reaction Aspects

Author:

Ahmad Iftikhar1,Qureshi Naveed1,Al-Khaled Kamel2,Aziz Samaira1,Chammam Wathek3,Ullah Khan Sami4

Affiliation:

1. Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan

2. Department of Mathematics & Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan

3. Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia

4. Department of Mathematics, COMSATS University Islamabad, Sahiwal 57000, Pakistan

Abstract

Modern evaluation in the nano-technology pronounced the nanofluidci idea accumulating the exceptional thermal conductivities which reflect many novel applications in engineering, solar energy processes, thermal engineering and modern technologies. On account of this, current research analysis addresses the time dependent flow of Casson nanofluid across bidirectional unsteady stretched heated surface accounted with porous zone. The combined mass and thermal transportation features are examined by introducing renowned Buongiorno’s nanofluid model. The magnetic evaluation, radiative exploration and reaction assertive are further deliberated for physical relevance. The formulated nonlinear flow model pondered to dimensionless category by utilizing appropriate quantities and later the analytic solution is revealed by homotopic analytic technique. The complete graphical elucidation for distinct relevant variables on temperature, velocities, concentration and skin frictions are displayed. The results emphasized that diminishing trends are reported in both velocity components with magnetic and Casson material parameters. An increasing behavior of nanofluid temperature is observed for Casson liquid material. The radiation parameter enhances nanofluid temperature while concentration profile is retarded with chemical reaction. Furthermore, unsteadiness variable enhances velocities, concentration as well as temperature distributions. The obtained results present applications in energy utilization, solar energy progression, chemical engineering, bioscience, extrusion processes, microelectronics etc.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3