Author:
Koo Otilia M. Y.,Rubinstein Israel,Onyuksel Hayat
Abstract
Camptothecin (CPT) is a topoisomerase I inhibitor that acts against a broad spectrum of cancers. Unfortunately clinical application of CPT is limited by insolubility, instability, and toxicity problems. To circumvent these delivery problems of CPT, we propose biocompatible, targeted
sterically stabilized micelles (SSM) as nanocarriers for CPT (CPT-SSM). SSM composed of polyethylene glycol (PEGylated) phospholipids are attractive nanocarriers for CPT delivery because they are sufficiently small to extravasate through the leaky microvasculature of tumor and inflamed tissues
for passive targeting. The purpose of this study was to develop a novel method of preparing CPT-SSM based on its pH dependent, reversible carboxylate-lactone conversion chemistry. CPT carboxylate was added to SSM at pH 5 that favored the formation of active but hydrophobic CPT lactone for
spontaneous association with SSM. The kinetics of CPT conversion and CPT-SSM formation, and the effect of varying CPT-PEGylated phospholipid molar ratio on CPT-SSM properties and CPT solubilization were evaluated. CPT converted gradually from the carboxylate form to lactone, and CPT-SSM were
formed after 12 h incubation. The mean size of CPT-SSM was ∼14 nm. CPT solubilization (∼12 μg/ml) and other CPT-SSM micelle properties did not change significantly with increasing CPT to PEGylated phospholipid molar ratios using this novel method, unlike the coprecipitation/reconstitution
technique previously reported. This reproducible CPT solubilization in SSM was attributed to avoidance of drug aggregate formation by this method. The advantages of our solvent pH change method to prepare CPT-SSM support further investigations of this approach to other hydrophobic drugs similar
to CPT in chemistry and also CPT molecular solubilization in other nanocarriers.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献