Nanoparticle Multilayers: Surface Modification of Photosensitive Drug Microparticles for Increased Stability and In Vitro Bioavailability
-
Published:2006-09-01
Issue:9
Volume:6
Page:3252-3260
-
ISSN:1533-4880
-
Container-title:Journal of Nanoscience and Nanotechnology
-
language:en
-
Short-container-title:j nanosci nanotechnol
Author:
Li Ning,Kommireddy Dinesh S.,Lvov Yuri,Liebenberg Wilna,Tiedt Louwrens R.,De Villiers Melgardt M.
Abstract
The results of this study report the novel use of electrostatic layer-by-layer nanoassembly of biocompatible nanoparticulate TiO2 multilayers to coat irregular nifedipine (NF) microcrystals to increase the photostability of the drug when exposed to simulated sunlight and
to increase the dissolution rate and possibly the bioavailability of the drug after oral administration. The photostability of NF microcrystals (35 μm) coated with multiple bilayers of positively charged PDDA and negatively charged nanosized TiO2 particles (20–25
nm) was measured when exposed to an illuminance of 12 W/m2 corresponding to a light dose of 30 k lux or 25 W/m2 corresponding to light dose of 60 k lux. The dissolution rate of nifedipine from the coated microcrystals was measured in simulated gastric fluid containing
0.05% w/v polysorbate 80. Coating with one TiO2 layer increased the shelf life of nifedipine by 30 hours independent of the intensity of the light exposure. With an increase in the number of TiO2 layers; the photostability of the drug was enhanced even more. A TiO2
monolayer decreased the contact angle by 20° for water and 33° for the dissolution medium as compared with uncoated NF surfaces. This increase in wettability due to a decrease in contact angle increased the dissolution rate of nifedipine microcrystals coated with 1 PDDA/TiO2
bilayer 13-fold after 10 minutes, 5-fold after 1 hour, and 2-fold after 12 hours when compared to uncoated microcrystals. It is assumed that TiO2 increased the photostability because the nanoparticulate multilayers acts as a potential filter protecting the drug from damaging light
rays reaching the drug crystals. The dissolution rate was increased because the hydrophilic TiO2 nanoparticles increased the aqueous wettability of the drug crystals thereby preventing aggregation in the dissolution medium. This ensured that the maximum drug surface area was exposed
to the dissolution medium.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献