Electrical Properties of Textured Bismuth Layer-Structured Ferroelectric Ceramics with Large Number of Layers (m = 5)

Author:

Ninomiya Yuki1,Kuroishi Kosuke1,Takagi Yuka1,Nagata Hajime1

Affiliation:

1. Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan

Abstract

Bismuth layer-structured ferroelectrics (BLSF) ceramics are attractive materials for high temperature sensor applications, because of their high Curie temperature Tc (300–900 °C), and the large anisotropy of their electromechanical coupling factor kt/kp or k33/k31. In this study, BLSF ceramics with a large number of layers, namely, (K0.5Bi0.5)2Bi4Ti5O18 + MnCO3 0.3 wt%+ Bi2O3 0.025 wt% (KBT5) and Sr0.75Ca0.25Na0.5Bi4.5Ti5O18 + CeO2 1 wt% [(SC)NBT5] ceramics, were prepared by ordinary firing (OF) and hot forging (HF) methods, and their electrical and piezoelectric properties were examined. Both KBT5 and (SC) NBT5 ceramics showed high Tc values of 545 and 424 °C, respectively. The OF-KBT5 ceramic had an electromechanical coupling factor k33 of 0.14 and a piezoelectric constant d33 of 20 pC/N, whereas the HF-KBT5 ceramic had k33 of 0.17 and d33 of 31 pC/N. On the other hand, the OF-(SC) NBT5 ceramic had k33 of 0.13 and d33 of 17 pC/N, whereas the HF-(SC) NBT5 ceramic had k33 that increased to 0.32 and d33 to 41 pC/N. The k33 and d33 of the HF ceramics were improved compared with those of the OF ceramics. Thus, the KBT5 and (SC) NBT5 ceramics with oriented grains were shown to have good piezoelectric properties with high Tc.

Publisher

American Scientific Publishers

Reference30 articles.

1. Ferroelectrics of the oxygen-octahedral type with layered structure;Smolenskii;Soviet Physics Solid State,1961

2. Crystal chemistry of mixed bismuth oxides with layer-type structure;Subbarao;Journal of the American Ceramic Society,1962

3. Ferroelectricity in bismuth oxide type layer;Cross;Materials Research Bulletin,1971

4. Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics;Takenaka;Japanese Journal of Applied Physics,1980

5. High-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 ceramics;Kawada;Japanese Journal of Applied Physics,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3