Author:
Abdel-Rahman Gamal M.,El-Fayez Faiza M. N.
Abstract
We in this study investigated Brownian motion and thermophoresis effects embedded in a porous medium flow with heat transfer generation and chemical reaction on a stretching sheet and Jeffrey fluid model for viscoelastic nanofluid under the effects of magnetic field and thermal radiation.
The nanofluid was assumed incompressible and the flow was laminar, with base fluid containing the following types of nanoparticles: Copper (Cu), Aluminum (Al2O3) and Titanium Oxide (TiO2). The governing continuity, momentum, and energy equations for the nanofluid
were reduced using similarity transformation and converted into a system of non-Linear ordinary differential equations which were solved numerically. Numerical solutions were also obtained for the velocity, temperature and nanoparticle concentration fields, as well as for skin friction coefficient
and Nusselt number. Finally, numerical values for the physical quantities, such as local skin-friction coefficient, local Nusselt number, local Sherwood number and wall deposition flux are herein presented in tabular form.
Publisher
American Scientific Publishers
Subject
General Materials Science