Author:
Cui Chao,Liu Zhen,Zhang Jianren,Cai Chunsheng,Peng Hui,Liu Yang
Abstract
In the present study, an alkaline solution, prepared by sodium silicate (Na2SiO3) and sodium hydroxide (NaOH), was used as an activator for the preparation of a metakaolin-based geopolymer with high compressive strength. The effects of the factors, including the
modulus (SiO2/Na2O ratio) of the alkaline activator, activator concentration, curing temperature, and curing time on the mechanical properties of the geopolymer were examined using orthogonal tests. Test results showed that the concentration of the alkaline activator
is the primary factor affecting the mechanical properties of the geopolymer, followed by the modulus of the alkaline activator. The compressive strength of the geopolymer increases with an increase in activator concentration and decrease in the modulus of the alkaline activator. Subsequently,
the reaction degree of the geopolymer and the reaction products corresponding to various concentrations of the activator were investigated using microcalorimetric analysis, Fourier Transform Infrared (FT-IR) analysis, and Scanning electron microscopy-Energy Dispersive Spectrometer (SEM-EDS)
analysis, and the mechanism of the activator concentration affecting the geopolymer properties was also studied. It was found that the hydrolysis reaction and the polymerization degree were improved with an increase in the activator concentration. When the activator concentration increased
from 50% to 80%, the compressive strength of the geopolymer increased from 21.54 MPa to 99.89 MPa. In addition, the SEM images also showed that the reaction products with a higher activator concentration, had a denser and more homogeneous matrix than that of products with a lower activator
concentration.
Publisher
American Scientific Publishers
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献