Enhanced Photocatalytic Properties of N and Fe Co-Doped TiO2 Nanocomposites with Reduced Graphene Oxide for Volatile Organic Compounds

Author:

Li Zhanguo,Shi Chao,Wang Lijuan,Sun Lijing,Sun Qiang

Abstract

Photocatalytic nanocomposites of titanium dioxide (TiO2) were prepared by hydrothermal method. Reduced graphene oxide (RGO) was applied to prepare various TiO2 composites of doped nanoparticles by using NH4Cl and FeCl3 as sources. The structure and morphology of these composites showed that TiO2 was loaded on surface of RGO. Meanwhile, the agglomeration of TiO2 decreased and the dispersion became uniform for doped materials. Under ultraviolet (UV) light irradiation, the photocatalytic degradation of volatile organic compounds (VOC) by RGO/TiO2 composites with codoping of N and Fe reached to 90.5%. The photocatalytic degradation was higher than RGO/TiO2 composites and pure TiO2 by 1.8 and 5.9 times, respectively. The role of co-doping composites may have a possible mechanism for toluene under UV light irradiation. The enhanced photocatalytic properties were attributed to N and Fe doping which generated intermediate energy level, extended absorption and decreased band gap of UV light.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3