Multi-Class Brain Disease Classification Using Modified Pre-Trained Convolutional Neural Networks Model with Substantial Data Augmentation

Author:

Nandhini I.1,Manjula D.1,Sugumaran Vijayan2

Affiliation:

1. Department of Computer Science and Engineering, CEG Campus, Anna University, Guindy, Chennai 600025, India

2. Department of Decision and Information Science, Oakland University, Rochester, MI 48309, USA

Abstract

The integration of various algorithms in the medical field to diagnose brain disorders is significant. Generally, Computed Tomography, Magnetic Resonance Imaging techniques have been used to diagnose brain images. Subsequently, segmentation and classification of brain disease remain an exigent task in medical image processing. This paper presents an extended model for brain image classification based on a Modified pre-trained convolutional neural network model with extensive data augmentation. The proposed system has been efficiently trained using the technique of substantial data augmentation in the pre-processing stage. In the first phase, the pre-trained models namely AlexNet, VGGNet-19, and ResNet-50 are employed to classify the brain disease. In the second phase, the idea of integrating the existing pre-trained model with a multiclass linear support vector machine is incorporated. Hence, the SoftMax layer of pre-trained models is replaced with a multi class linear support vector machine classifier is proposed. These proposed modified pre-trained model is employed to classify brain images as normal, inflammatory, degenerative, neoplastic and cerebrovascular diseases. The training loss, mean square error, and classification accuracy have been improved through the concept of Cyclic Learning rate. The appropriateness of transfer learning has been demonstrated by applying three convolutional neural network models, namely, AlexNet, VGGNet-19, and ResNet-50. It has been observed that the modified pre-trained models achieved a higher classification rate of accuracies of 93.45% when compared with a finetuned pre-trained model of 89.65%. The best classification accuracy of 92.11%, 92.83% and 93.45% has been attained in the proposed method of the modified pre-trained model. A comparison of the proposed model with other pre-trained models is also presented.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning: Basics and Convolutional Neural Networks (CNNs);Machine Learning for Brain Disorders;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3