Affiliation:
1. Department of Computer Science and Engineering, CEG Campus, Anna University, Guindy, Chennai 600025, India
2. Department of Decision and Information Science, Oakland University, Rochester, MI 48309, USA
Abstract
The integration of various algorithms in the medical field to diagnose brain disorders is significant. Generally, Computed Tomography, Magnetic Resonance Imaging techniques have been used to diagnose brain images. Subsequently, segmentation and classification of brain disease remain
an exigent task in medical image processing. This paper presents an extended model for brain image classification based on a Modified pre-trained convolutional neural network model with extensive data augmentation. The proposed system has been efficiently trained using the technique of substantial
data augmentation in the pre-processing stage. In the first phase, the pre-trained models namely AlexNet, VGGNet-19, and ResNet-50 are employed to classify the brain disease. In the second phase, the idea of integrating the existing pre-trained model with a multiclass linear support vector
machine is incorporated. Hence, the SoftMax layer of pre-trained models is replaced with a multi class linear support vector machine classifier is proposed. These proposed modified pre-trained model is employed to classify brain images as normal, inflammatory, degenerative, neoplastic and
cerebrovascular diseases. The training loss, mean square error, and classification accuracy have been improved through the concept of Cyclic Learning rate. The appropriateness of transfer learning has been demonstrated by applying three convolutional neural network models, namely, AlexNet,
VGGNet-19, and ResNet-50. It has been observed that the modified pre-trained models achieved a higher classification rate of accuracies of 93.45% when compared with a finetuned pre-trained model of 89.65%. The best classification accuracy of 92.11%, 92.83% and 93.45% has been attained in the
proposed method of the modified pre-trained model. A comparison of the proposed model with other pre-trained models is also presented.
Publisher
American Scientific Publishers
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献