Author:
Xin Qi,Hu Shaohai,Liu Shuaiqi,Ma Xiaole,Lv Hui,Zhang Yu-Dong
Abstract
Clinical Electroencephalogram (EEG) data is of great significance to realize automatable detection, recognition and diagnosis to reduce the valuable diagnosis time. To make a classification of epilepsy, we constructed convolution support vector machine (CSVM) by integrating the advantages
of convolutional neural networks (CNN) and support vector machine (SVM). To distinguish the focal and non-focal epilepsy EEG signals, we firstly reduced the dimensionality of EEG signals by using principal component analysis (PCA). After that, we classified the epilepsy EEG signals by the
CSVM. The accuracy, sensitivity and specificity of our method reach up to 99.56%, 99.72% and 99.52% respectively, which are competitive than the widely acceptable algorithms. The proposed automatic end to end epilepsy EEG signals classification algorithm provides a better reference for clinical
epilepsy diagnosis.
Publisher
American Scientific Publishers
Subject
Health Informatics,Radiology Nuclear Medicine and imaging
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献