Affiliation:
1. Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638401, Erode, India
Abstract
The association rule mining approach produces uninteresting association rules. When the set of association rules become large, it becomes less interesting to the user. In order to pick interesting association rules among peak volumes of found association rules, it is critical to aid
the decision-maker with an efficient post-processing phase. Theymotivate the need for association analysis performance. Practically it is an overhead to analyze the large set of association rules. In this work, association rule pruning technique called Class Based Association Rule Pruning
(CBARP). This pruning techniques is proposed to prune the weak association rules of the healthcare system. The results are compared with Semantic Tree Based Association Rule Mining (STAR) technique and it demonstrate that the CBARP method outperforms other methods for the given support values.
Publisher
American Scientific Publishers
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging