An Efficient Retinal Vessels Biometric Recognition System by Using Multi-Scale Local Binary Pattern Descriptor

Author:

Malik Muhammad Sheraz Arshad,Zahra Qoseen,Khan Imran Ullah,Awais Muhammad,Qiao Gang

Abstract

Biometric systems are technically used for human recognition by identifying the unique features of an individual. Many security issues are found related to biometric systems such as voice, fingerprints, face, iris, signatures, etc., but the retina is a unique and efficient method to identify valid one. The aim of this paper is provided with an efficient method to recognize someone based on unique retina features. A proposed system based on retinal blood vessel pattern by using multi-scale local binary pattern (MSLBP) and random forest (Bagging tree) as feature extraction and classification. MSLBP is an efficient method to extracted features at six scales perpixel level, earlier work found the deficiency based on simple binary pattern with coverage of small areas and per-pixel level in the surrounding. MSLBP and random forest classifier suggested approach use for improving usability, perceivability, and sensitivity on large scale areas. It is the fastest method to get features accurately in an efficient way at every level of pixels. This method based on deep learning evaluation (criteria) parameter selection that provides more significant influence with sharp feature extraction on large scale areas based on seconds and improves the efficiency of images. MSLBP overcomes the problem of image sizing, pixel levels and efficiently provide accurate results.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3