ObSecure Logging (OSLo): A Framework to Protect and Evaluate the Web Search Privacy in Health Care Domain

Author:

Ullah Mohib,Islam Muhammad Arshad,Khan Rafiullah,Aleem Muhammad,Iqbal Muhammad Azhar

Abstract

Users around the world send queries to the Web Search Engine (WSE) to retrieve data from the Internet. Users usually take primary assistance relating to medical information from WSE via search queries. The search queries relating to diseases and treatment is contemplated to be the most personal facts about the user. The search queries often contain identifiable information that can be linked back to the originator, which can compromise the privacy of a user. In this work, we are proposing a distributed privacy-preserving protocol (OSLo) that eliminates limitation in the existing distributed privacy-preserving protocols and a framework, which evaluates the privacy of a user. The OSLo framework asses the local privacy relative to the group of users involved in forwarding query to the WSE and the profile privacy against the profiling of WSE. The privacy analysis shows that the local privacy of a user directly depends on the size of the group and inversely on the number of compromised users. We have performed experiments to evaluate the profile privacy of a user using a privacy metric Profile Exposure Level. The OSLo is simulated with a subset of 1000 users of the AOL query log. The results show that OSLo performs better than the benchmark privacy-preserving protocol on the basis of privacy and delay. Additionally, results depict that the privacy of a user depends on the size of the group.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Query Obfuscation for Information Retrieval Through Differential Privacy;Lecture Notes in Computer Science;2024

2. On the self-adjustment of privacy safeguards for query log streams;Computers & Security;2023-11

3. Artificial Intelligence (AI)-based Intrusion Detection System for IoT-enabled Networks;Protecting User Privacy in Web Search Utilization;2023-03-03

4. Desktop Search Engines;Protecting User Privacy in Web Search Utilization;2023-03-03

5. Web Search Privacy Evaluation Metrics;Protecting User Privacy in Web Search Utilization;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3