A Novel Disease Detection and Classification Method Using Improved Fusion Random Weight Support Vector Machine

Author:

Usha Rani M.1,Saravana Selvam N.1

Affiliation:

1. Department of Electronics and Communication Engineering, P.S.R. Engineering College, Sivakasi 626140, Tamil Nadu, India

Abstract

Health informatics is one of the main branch of engineering which provides a solution to a variety of problems like delayed, missed or incorrect diagnoses with the help of computational techniques. With the help of technologies such as bio-computing, health informatics, the disaster impacts on both human health and biological factors can be reduced to a large extend. Using these computational technologies, the country’s economy can also get boosted up and due to increased disease-causing pathogens, which directly impact the human health system. In this research work, a different type of sugarcane disease is detected and classified because manual identification is difficult and time-consuming. So, the farmers couldn’t find a better solution, than on the whole, they go for stubble burning, which is an alarming issue both on human and environmental wellness. The burning of bagasse causes bagassois, an interstitial lung disease that affects the tissues present in the lung through the air sacs. So, this sugarcane disease detection needs to be done early to avoid various health and environmental issues. The proposed work consists of the detection of four types of sugarcane leaf disease directly from the field. The sequence of methods is capturing images with WSN nodes, pre-processing with image enhancement and noise removal (IENR), segmentation with Fuzzy membership function and clustering (FMFC), feature extraction using Gray Level Co-occurrence Matrix Vector (GLCMV) and classification using Support Vector Machine (SVM). With the help of the effective proposed method, the highest parameters like precision, accuracy, sensitivity, and specificity for sugarcane leaf disease have been obtained. Based on the successful implementation process, the accuracy stated for the four sugarcane diseases along with the execution time is given below as Smut disease (87.12, 1.01 sec), Rust disease (90.23, 1.02 sec), Grassy Shoot disease (95.34, 1.047 sec), Red Rot disease (95.51, 1.04 sec).

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3