Abstract
The liver is the largest substantial organ in the abdominal cavity of the human body. Its structure is complex, the incidence of vascular abundance is high, and it has been seriously ribbed, human health and life. In this study, an automatic segmentation method based on deep convolutional
neural network is proposed. Image data blocks of different sizes are extracted as training data and different network structures are designed, and features are automatically learned to obtain a segmentation structure of the tumor. Secondly, in order to further refine the segmentation boundary,
we establish a multi-region segmentation model with region mutual exclusion constraints. The model combines the image grayscale, gradient and prior probability information, and overcomes the problem that the boundary point attribution area caused by boundary blur and regional adhesion is difficult
to determine. Finally, the model is solved quickly using the time-invisible multi-phase level set. Compared with the traditional multi-organ segmentation method, this method does not require registration or model initialization. The experimental results show that the model can segment the
liver, kidney and spleen quickly and effectively, and the segmentation accuracy reaches the advanced level of current methods.
Publisher
American Scientific Publishers
Subject
Health Informatics,Radiology Nuclear Medicine and imaging
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献