Author:
Deepa S.,Chamundeeswari V. Vijaya
Abstract
Face recognition is a significant biometric credential in the field of security authentication. It additionally assumes a noteworthy job in image processing and it is applicable in various systems like verifying the identity of the person and in security purpose. Recognizing the face
with varying background, poses and illumination are the complexity involved in this face recognition. Many algorithms exist for face recognition, of which, Discrete Wavelet Transform (DWT) with Principal Component Analysis (PCA) works better for recognition of faces. An algorithm using 3 Level-DWT
and modified PCA is proposed for feature extraction. The PCA and reconstruction of images using Inverse PCA, help not only for dimensionality reduction, but also to find the least principal components (PC) of an image from which the significant features of a face image can be extracted. The
significant features thus extracted are used for classifying genetic and non-genetic faces. Using extracted features from 3 level DWT and PCA, Support vector machine (SVM) is utilized to classify the faces genetically. The proposed extracted features does not intend to certain features like
ears, nose and eyes of the face, but corresponds to identify the faces which are genetically similar. Based on the statistical measure analysis, the proposed algorithm 3 Level dwt with modified PCA works well in extracting the features for identifying the faces which are genetically closer.
This face recognition application system can be effectively used to treat a patient in other location with complete security. There is no chance for data stealing, since the concerned doctors and patient only will take part in the system. The identification of genetic faces will turn out to
be an achievement in the field of health care monitoring systems.
Publisher
American Scientific Publishers
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献