Automated Interpretation of Myocardial Perfusion Images with Multilayer Perceptron Network as a Decision Support System

Author:

Eftekhari Mohammad,Abbasi Mehrshad,Tarafdari Azam,Emami-Ardekani Alireza,Farzanefar Saeed,Kalantari Faraz,Fallahi Babak,Fard-Esfahani Armaghan,Beiki Davood,Naseri Maryam,Saghari Mohsen

Abstract

Aim: Bull's eye pattern recognition with artificial neural networks (ANNs) has the potential to assist interpretation of myocardial perfusion images (MPIs). We aimed to develop a model for interpretation of MPI based on the clinical variables and imaging data. Materials and Methods: The study included 208 patients referred to the department of nuclear medicine for 2-day stress-rest ECG-gated MPI. Several ANN models were designed with the following input variables: average count of 20 segments of the bull's eye images of stress and rest MPIs, gender, the constellation of coronary artery disease risk factors and scintigraphic cardiac ejection fraction. The procedure was repeated excluding the data of the rest phase scan. Data of 150 subjects were used for training, 21 subjects for cross-validation and 37 subjects for final operation testing. Several ANN models were examined with different hidden layers and processing elements and functions. The target output variable was the conclusion of the nuclear physician (i.e., normal vs. abnormal scan). Results: A multilayer perceptron (MLP) with two hidden layers trained with both stress and rest data demonstrated the best performance to classify the normal and abnormal MPIs. It showed an overall accuracy of 91.9%, sensitivity of 91.3% and specificity of 92.9%. The accuracy of the similar MLP trained using stress-only myocardial perfusion images reduced to 67.6%. Conclusion: The automated interpretation of MPIs with a 2 hidden layer MLP trained with stress and rest images could be an accurate support system either for the interpretation or quality assurance.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3