Affiliation:
1. Research Scholar, Anna University, Chennai 600025, Tamilnadu, India
2. Department of Electronics and Communication Engineering Anna University, Regional Campus, Coimbatore 641046, Tamilnadu, India
Abstract
Real-time physiological data may be gathered using wearable medical sensors based on a network of body sensors. We do not however have an effective, trustworthy and secure body sensor network platform (BSN) that can satisfy growing e-health requirements. Many of these applications require
BSN to provide the dependable and energy efficient data transfer of many data speeds. Cloud computing is giving assets to patient dependent on application request at SLA (service level agreement) rules. The service providers are focusing on giving the necessity based asset to satisfy the QoS
(quality of service) prerequisites. Therefore, it has become an assessment to adapt service-oriented assets because of vulnerability and active interest for cloud services. The task scheduling is an option in contrast to appropriating asset by evaluating the inconsistent outstanding task at
hand. the allocation of tasks given by the microprocessor Subsequently, a productive asset scheduling method needs to disseminate proper VMs (Virtual Machines). The swarm intelligence is appropriate to deal with such vulnerability issues carefully. In this paper, an effective resource scheduling
strategy Utilizing Modified Particle Swarm Optimization approach (MPSO) is presented, with a target to limit execution cost that gives an approach for the microprocessor to deal with the multiple number of tasks gives to the controllers in order to perform the multiple tasks that gets logged
in the cloud via Internet of things technology (Iot), energy consumed, bandwidth consumption, speed and execution cost. The near investigation of results has been exhibited that the presented scheduling scheme performed better when contrasted with existing evaluation. In this manner, the presented
resource scheduling approach might be utilized to enhance the viability of cloud resources.
Publisher
American Scientific Publishers
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging