Hybrid Neuro-Fuzzy Learning Models for Classification of Motion Sickness Levels Using Biosignals

Author:

Paul Jis1,Madheswaran M.2

Affiliation:

1. Research Scholar (Full Time), Anna University, Chennai 600025, Tamilnadu, India

2. Centre for Research in Signal and Image Processing Department of Electronics and Communication Engineering, Muthayammal Engineering College (Autonomous), Rasipuram 637408, Tamilnadu, India

Abstract

Motion sickness is all around as long as there is existence of humans and motion. This sickness has been common in numerous people and due to which it has become the focus area of neurological, psychological and physiological researchers. Most common group of this motion sickness pertains to the category of visual sensitivity; also called visual dependence, wherein people become sick due to visual motion. In this research paper, classification of the levels of motion sickness is done by developing classifiers: (1) k-Nearest neighbour (kNN) classifier (2) Fuzzy c-means classifier (3) ELMAN neural classifier (4) Fuzzy-Wavelet neural network classifier. All the developed classifier models are based on variants of machine learning approaches and are designed to overcome the limitation of the conventional binary classification approach. In this work, electroencephalogram (EEG) data, centre of pressure and trajectories of head and waist motion data of 20 people were recorded and the developed classifier models were applied over them to attain the classification accuracy. Features of these multiple biosignals are denoised and extracted over which the classifier models were tested. The proposed technique is simulated in MATLAB simulation environment for the considered candidate data samples. Numerical simulation was carried out and the results prove the superiority and effectiveness of the developed classifiers over the various existing classifier models.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3