Low-Dose X-ray CT Reconstruction Algorithm Using Shearlet Sparse Regularization

Author:

Xiao Dayu,Zhang Xiaotong,Li Jianhua,Bao Nan,Kang Yan

Abstract

Computed tomography (CT) scans produce ionizing radiation in the body, and high-dose CT scans may increase the risk of cancer. Therefore, reducing the CT radiation dose is particularly important in clinical diagnosis, which is achieved mainly by reducing projection views and tube current. However, the projection data are incomplete in the case of sparse views, which may cause stripe artifacts in the image reconstructed by the filtered back projection (FBP) algorithm, thereby losing the details of the image. Low current intensity also increases the noise of the projection data, degrading the quality of the reconstructed image. This study aimed to use the alternating direction method of multipliers (ADMM) to address the shearlet-based sparse regularization problem, which is subsequently referred to as ADMM-shearlet method. The low-dose projection data were simulated by adding Gaussian noise with zero mean to high-dose projection data. Then FBP, simultaneous algebraic reconstruction technique, total variation, and ADMM-shearlet methods were used to reconstruct images. Normalized mean square error, peak signal-to-noise ratio, and universal quality index were used to evaluate the performance of different reconstruction algorithms. Compared with the traditional reconstruction algorithms, the ADMM-shearlet algorithm performed well in suppressing the noise due to the low dose while maintaining the image details.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3