Non-Rigid Liver Registration in Liver Computed Tomography Images Using Elastic Method with Global and Local Deformations

Author:

Park Taeyong1,Lee Jeongjin2,Shin Juneseuk3,Won Kim Kyoung4,Chul Kang Ho5

Affiliation:

1. University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 138-736, Korea

2. School of Computer Science and Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 156-743, Korea

3. Department of Systems Management Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Korea

4. Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 138-736, Korea

5. Department of Media Technology & Media Contents, The Catholic University of Korea, Gyeonggi-do, 14662, Korea

Abstract

The study of follow-up liver computed tomography (CT) images is required for the early diagnosis and treatment evaluation of liver cancer. Although this requirement has been manually performed by doctors, the demands on computer-aided diagnosis are dramatically growing according to the increased amount of medical image data by the recent development of CT. However, conventional image segmentation, registration, and skeletonization methods cannot be directly applied to clinical data due to the characteristics of liver CT images varying largely by patients and contrast agents. In this paper, we propose non-rigid liver segmentation using elastic method with global and local deformation for follow-up liver CT images. To manage intensity differences between two scans, we extract the liver vessel and parenchyma in each scan. And our method binarizes the segmented liver parenchyma and vessel, and performs the registration to minimize the intensity difference between these binarized images of follow-up CT images. The global movements between follow-up CT images are corrected by rigid registration based on liver surface. The local deformations between follow-up CT images are modeled by non-rigid registration, which aligns images using non-rigid transformation, based on locally deformable model. Our method can model the global and local deformation between follow-up liver CT scans by considering the deformation of both the liver surface and vessel. In experimental results using twenty clinical datasets, our method matches the liver effectively between follow-up portal phase CT images, enabling the accurate assessment of the volume change of the liver cancer. The proposed registration method can be applied to the follow-up study of various organ diseases, including cardiovascular diseases and lung cancer.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3