Effect of Scan Time on Neuro 18F-Fluorodeoxyglucose Positron Emission Tomography Image Generated Using Deep Learning

Author:

Kim Jaewon1,Kang Sungsik1,Lee Konsu1,Ho Jung Jin1,Kim Garam1,Keong Lim Hyun1,Choi Yong1,Lee Sangwon2,Yun Mijin2

Affiliation:

1. Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea

2. Departments of Nuclear Medicine, Severance Hospital, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

Abstract

The purpose of this study was to generate the PET images with high signal-to-noise ratio (SNR) acquired for typical scan durations (H-PET) from short scan time PET images with low SNR (L-PET) using deep learning and to evaluate the effect of scan time on the quality of predicted PET image. A convolutional neural network (CNN) with a concatenated connection and residual learning framework was implemented. PET data from 27 patients were acquired for 900 s, starting 60 minutes after the intravenous administration of FDG using a commercial PET/CT scanner. To investigate the effect of scan time on the quality of the predicted H-PETs, 10 s, 30 s, 60 s, and 120 s PET data were generated by sorting the 900 s LMF data into the LMF data acquired for each scan time. Twenty-three of the 27 patient images were used for training of the proposed CNN and the remaining four patient images were used for test of the CNN. The predicted H-PETs generated by the CNN were compared to ground-truth H-PETs, L-PETs, and filtered L-PETs processed with four commonly used denoising algorithms. The peak signal-to-noise ratios (PSNRs), normalized root mean square errors (NRMSEs), and average regionof- interest (ROI) differences as a function of scan time were calculated. The quality of the predicted H-PETs generated by the CNN was superior to that of the L-PETs and filtered L-PETs. Lower NRMSEs and higher PSNRs were also obtained from predicted H-PETs compared to the L-PETs and filtered L-PETs. ROI differences in the predicted H-PETs were smaller than those of the L-PETs. The quality of the predicted H-PETs gradually improved with increasing scan times. The lowest NRMSEs, highest PSNRs, and smallest ROI differences were obtained using the predicted H-PETs for 120 s. Various performance test results for the proposed CNN indicate that it is possible to generate H-PETs from neuro FDG L-PETs using the proposed CNN method, which might allow reductions in both scan time and injection dose.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3