Optimization Techniques for Improving the Performance of Solar Photovoltaic System in Conjunction with Health Informatics and the Hospital Energy Management System

Author:

Elam Cheren S.1,Ashok Kumar L.2

Affiliation:

1. Department of Electrical and Electronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore 641008, Tamil Nadu, India

2. Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore 641005, Tamil Nadu, India

Abstract

Energy savings, clean energy, savings in utility and energy governance tools are buzzwords in the healthcare industry. Healthcare sectors become largest consumer of energy in the modern world. Based on data of American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), a moderate hospital consume 2.5 times higher energy than commercial buildings. As a result, increased worries about energy costs and environmental issues, as well as the anticipation of rising energy prices in the future and the need to enhance the dependability of healthcare facilities, have led to a focus on in-house power generation systems and the importance of energy management in hospitals and their health care facilities. Solar power systems that are clean and ecologically friendly have grown in popularity as distributed power generation (DPG) systems in recent years. In this work, a Grid-tied Solar PV system incorporated with Battery energy storage technology is considered in conjunction with health informatics and the hospital Energy Management System reduces energy consumption cost and improves the reliability of the power supply to run all clinical equipment available in the hospital’s Intensive Care Unit (ICU) and other premises. In this context, the Energy management controller utilised in the hospital Energy Management System will effectively use the electricity supplied by the Solar PV system while minimising grid demand and stabilising the voltage in the DC bus, which must be inverted into AC using an inverter to feed clinical loads. Furthermore the maximum power point tracking method is adopted, which enhances the quality of DC voltage generated by solar PV panels and feed to the DC bus. Sliding mode controller (SMC) is adopted in the inverter side and the quality of the inverted voltage is optimized using artificial bee colony (ABC) method. The proposed solar PV system in conjunction with health informatics and the hospital Energy Management System is developed and simulated in the MATLAB Simulink. The response of the suggested SMC and ABC techniques are compared and their outcomes are shown to confirm the performance of hospital energy management system.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey of Clean Energy Industry Based on Information Analysis Method;Journal of Power and Energy Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3