A Novel Image Segmentation Method for Cardiac MRI Using Support Vector Machine Algorithm Based on Particle Swarm Optimization

Author:

Wang Guanghui1,Ma Lihong2

Affiliation:

1. Department of Network Management, Non-Commissioned Officer’s School of the Chinese People’s Armed Police Force, Hangzhou, Zhejiang 310012, China

2. The High School Attached to Zhejiang University, Hangzhou, Zhejiang 310007, China

Abstract

At present, heart disease not only has a significant impact on the quality of human life but also poses a greater impact on people’s health. Therefore, it is very important to be able to diagnose heart disease as early as possible and give corresponding treatment. Heart image segmentation is the primary operation of intelligent heart disease diagnosis. The quality of segmentation directly determines the effect of intelligent diagnosis. Because the running time of image segmentation is often longer, coupled with the characteristics of cardiac MR imaging technology and the structural characteristics of the cardiac target itself, the rapid segmentation of cardiac MRI images still has challenges. Aiming at the long running time of traditional methods and low segmentation accuracy, a medical image segmentation (MIS) method based on particle swarm optimization (PSO) optimized support vector machine (SVM) is proposed, referred to as PSO-SVM. First, the current iteration number and population number in PSO are added to the control strategy of inertial weight λ to improve the performance of PSO inertial weight λ. Find the optimal penalty coefficient C and γ in the gaussian kernel function by PSO. Then use the SVM method to establish the best classification model and test the data. Compared with traditional methods, this method not only shortens the running time, but also improves the segmentation accuracy. At the same time, comparing the influence of traditional inertial weights on segmentation results, the improved method reduces the average convergence algebra and shortens the optimization time.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3