Predictive Data Modeling Using sp-kNN for Risk Factor Evaluation in Urban Demographical Healthcare Data

Author:

Bhatti Uzair Aslam,Yuan Linwang,Yu Zhaoyuan,Nawaz Saqib Ali,Mehmood Anum,Bhatti Mughair Aslam,Zeeshan Qurat ul Ain,Nizamani Mir M.,Zeeshan ,Xiao Shengjun

Abstract

Healthcare diseases are spreading all around the globe day to day. Hospital datasets are full from the data with much information. It's an urgent requirement to use that data perfectly and efficiently. We propose a novel algorithm for predictive model for eye diseases using KNN with machine learning algorithms and artificial intelligence (AI). The aims are to evaluate the connection between the accumulated preoperative risk variables and different eye diseases and to manufacture a model that can anticipate the results on an individual level, thus giving relevance to impactful factors and geographic and demographic features. Risk factors of the desired diseases were calculated and machine learning algorithm applied to provide the prediction of the diseases. Health monitoring is an economic discipline that focuses on the effective allocation of medical resources, mainly to maximize the benefits of society to health through the available resources. With the increasing demand for medical services and the limited allocation of medical resources, the application of health economics in clinical practice has been paid more and more attention, and it has gradually played an important role in clinical decision-making.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3