Segmentation of Pulmonary Parenchyma from Pulmonary CT Based on ResU-Net++ Model

Author:

Yan Xuantong1,Wu Yuejiang1,Tan Wenjun1

Affiliation:

1. Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110189, China; School of Computer Science and Engineering, Northeastern University, Shenyang 110189, China

Abstract

Pulmonary parenchyma segmentation is an important basic step in CT detection, which requires high accuracy and speed. According to the characteristics of lung structure, we present a method for segmenting CT images of lung parenchyma based on the ResU-net++ neural network model. The model preserves the deep feature parameters extracted from the residual blocks while paying attention to preserving the feature parameters obtained by transferring the shallow convolution blocks. The experimental results show that compared with U-net and U-net++ models, the lung parenchyma segmentation results using this method are more accurate, the accuracy of lung parenchyma edge identification is significantly improved, and it is more suitable for the diverse structures at both ends of the lung.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3