Deep Learning Based Adaptive Recurrent Neural Network for Detection of Myocardial Infarction

Author:

Mahendran Rakesh Kumar1,Prabhu V.1,Parthasarathy V.2,Mary Judith A.3

Affiliation:

1. Department of Electronics and Communication Engineering, Vel Tech Multitech Dr.Rangarajan Dr.Sakuthala Engineering College, Chennai 600062, Tamil Nadu, India

2. Department of Computer Science and Engineering, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India

3. Department of Computer Science, Loyola-ICAM College of Engineering & Technology, Chennai 600034, Tamil Nadu, India

Abstract

Myocardial infarction (MI) may precipitate severe health damage and lead to irreversible death of the heart muscle, the result of prolonged lack of oxygen if it is not treated in a timely manner. Lack of accurate and early detection techniques for this heart disease has reduced the efficiency of MI diagnosis. In this paper, the design, and implementation of an efficient deep learning algorithm called Adaptive Recurrent neural network (ARNN) is proposed for the MI detection. The main objective of the proposed work is the accurate identification of MI disease using ECG signals. ECG signal denoising has been performed using the Multi-Notch filter, which removes the specified noise frequency range. Discrete wavelet transform (DWT) is utilized for performing the feature extraction that decomposes the ECG signal into varied scales with waveletfiltering bank. After the extraction of specific QRS features, classification of the defected and normal ECG arrhythmic beat has been performed using the deep learning-based ARNN classifier. The MIT-BIH database has been used for testing and training data. The performance of the proposed algorithm is evaluated based on classification accuracy. Results that are attained include the classification accuracy of about 99.21%, 99% of sensitivity and 99.4% of specificity with PPV and NPV of about 99.4 and 99.01 values indicate the enhanced performance of our proposed work compared with the conventional LSTM-CAE and LSTM-CNN techniques.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3