An Iterative Axial and Lateral Ultrasound Strain Estimator Using Subband Division

Author:

Peng Hui1,Tie Juhong1,Guo Dequan2

Affiliation:

1. School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China

2. School of Control Engineering, Chengdu University of Information Technology, Chengdu 610225, China

Abstract

Conventional ultrasound strain imaging usually only calculates the axial strain. Although axial strain is the main component of two dimensional strain field, lateral displacement and strain estimation can provide additional information of human mechanical properties. Shear strain and Poisson’s ratio can be estimated by using lateral strain estimation technique. Low lateral sampling rate and decorrelation noise of lateral radio frequency (RF) signal caused by axial displacement motion increase the difficulty of lateral strain estimation. Subband division technique is to divide a broadband signal into several narrowband signals. In this paper, the application of subband division technique in axial and lateral strain estimation is studied, and an iterative method for estimating axial and lateral strains is proposed based on subband technique. The subband division of this method is carried out along the axial direction, so that the bandwidth of the lateral subband signal is maintained and the quality of the lateral sub strain image is not reduced. In this paper, the number of subbands is three; the compounded lateral strain image is obtained by superimposing these sub strain images on the average. In each iteration, the temporal stretching technique is used to align the axial and lateral RF signals by using the axial and lateral displacement estimation information, which reduces the decorrelation noise of the RF signals. The length of temporal stretching window decreases with the number of iterations, so as to gradually improve the accuracy of temporal stretching. The phase zero algorithm is used to estimate the axial and lateral displacements. The effectiveness of this method is tested by simulations. The simulation results show that the elastographic signal-to-noise ratio (SNRe) of lateral strain image is increased by about 50%, the elastographic contrast noise ratio (CNRe) of lateral strain image is increased by about 120%, the SNRe of axial strain image is increased by about 4%, the CNRe of axial strain image is increased by 8%, and the signal-to-noise ratio of Poisson’s ratio image is increased by about 40%.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3