Depression Classification Model Based on Emotionally Related Eye-Movement Data and Kernel Extreme Learning Machine

Author:

Lu Shengfu,Liu Sa,Li Mi,Shi Xin,Li Richeng

Abstract

The paper constructed a depression classification model based on emotionally related eye-movement data and kernel extreme learn machine (ELM). In order to improve the classification ability of the model, we use particle swarm optimization (PSO) to optimize the model parameters (regularization coefficient C and the parameter σ in the kernel function). At the same time, in order to avoid to be caught in the local optimum and improve PSO's searching ability, we use improved chaotic PSO optimization algorithm and Gauss mutation strategy to increase PSO's particle diversity. The classification results show that the accuracy, sensitivity and specificity of classification models without parameter optimization and Gauss mutation strategy are 80.23%, 80.31% and 79.43%, respectively, while those results of classification model using improved chaotic projection model and Gauss mutation strategy are improved to 88.55%, 87.71% and 89.42%, respectively. Compared with other classification methods of depression, the proposed classification method has better performance on depression recognition.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Depression Detection using Extreme Learning Machine;2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN);2024-05-03

2. 2-level hierarchical depression recognition method based on task-stimulated and integrated speech features;Biomedical Signal Processing and Control;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3