An Efficient Steganalysis of Medical Images by Using Deep Learning Based Discrete Scalable Alex Net Convolutionary Neural Networks Classifier

Author:

Hemalatha J.1,Geetha S.2,Mohan Sekar1,Nivetha S.3

Affiliation:

1. AAA College of Engineering and Technology, Amathur, Sivakasi 626123, India

2. VIT Chennai Campus, Chennai 632014, India

3. Ayya Nadar Janaki Ammal College of Arts and Science (Autonomous), Sivakasi 626124, India

Abstract

Steganalysis is the technique that tries to beat steganography by detecting and removing secret information. Steganalysis involves the detection of a message embedded in a picture. Deep Learning (DL) advances have offered alternative approaches to many difficult issues, including the field of image steganalysis using deep-learning architecture based on convolutionary neural networks (CNN). In recent years, many CNN architectures have been established that have enhanced the exact identification of steganographic images. This work presents a novel architecture which involves a preprocessing stage using histogram equalization and adaptive recursive median filter banks to reduce image noise, a feature extraction stage using shearlet multilinear local embedding methods and then finally the classification can be done by using the discrete scalable Alex NET CNN classifier. Performance was evaluated on the RGB-BMP Steganalysis Dataset with different experimental setups. To prove the effectiveness of the suggested algorithm it can be compared with the other existing methodologies. This work improves classification accuracies on all other existing algorithms over test data.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3