Segmentation of Breast Mass and Diagnosis of Benign and Malignant Breast Tumors Based on Edge Constraint in Pulse Coupled Neural Network

Author:

Hu Haozhong1

Affiliation:

1. Haiyan People’s Hospital, Haiyan, 314300, Zhejiang, China

Abstract

In order to segment breast tumor accurately, an improved Unit-Linking Pulse-Coupled Neural Networks based mammography image segmentation method is proposed. Firstly, the link input and coupled parameter in the original model are improved according to the relationship between this neuron and its neighbors. Then, the improved model is used to segment the breast tumor image to obtain multiple output images. Finally, the gradient algorithm is used to calculate the edges of the original image and each output image respectively, and the minimum mean square error (MMSE) of the two edge images is calculated to find the best output image. The final experimental results indicate that the improved method can accurately segment breast tumor images in different environments. In addition, based on the segmentation results, we use the SVM method to diagnose the type of tumor, and its classification accuracy is much higher than the existing deep classification algorithm.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3