Deep Learning Approach Applied to Prediction of Bone Age Based on Computed Tomography Orthopedic Image Processing

Author:

Tan Gefei1,Wang Daoshun2

Affiliation:

1. Department of Computer Science, Beijing University of Technology, Beijing, 100022, China

2. Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

Abstract

Objective: Deep learning and neural network models are new research directions in the field of machine learning and artificial intelligence. Deep learning has made breakthroughs in image recognition and speech recognition applications, and has also shown unique advantages in face recognition and information retrieval, and has been widely used. Methods: Thin-layer computed tomography (CT) scan and multiplanar reconstruction (MPR) and volume reconstruction (VR) techniques were used to perform CT thin-slice scan and volume of the bilateral clavicle sternum at 548 number of l5~25 years old. Reproduction (volume rendering, VR) and three-dimensional image recombination, measuring and calculating the longest diameter of the sternal end of the bilateral clavicle, the longest diameter of the metaphysis and its length ratio, the area of the epiphysis, the area of the metaphysis and its area ratio, etc. We establish a mathematical model of bone age inference, and then substitute 50 training samples into the mathematical model to test the accuracy of the model. Results: There was a statistically significant difference between the male and female sex ratios in the same age group (P < 0.05). The established mathematical model shows that the developmental law of the sternal skeletal bone is highly correlated with the biological age. The accuracy of all models is 70.5% (±1.0 years old) and 82.5% (±1.5 years). Skeletal X-ray images show different gradation changes in black and white, with black-and-white contrast and hierarchical image features. Based on the advantages of deep learning in image recognition, we combine it with bone age assessment research to build a forensic bone age automation. Conclusions: This paper harnesses the basic concepts of deep learning and its network structure, and expounds the research progress of deep learning in image recognition in different research fields at home and abroad in recent years, as well as the advantages and application prospects of deep learning in bone age assessment.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3