Curcumin Releasing Eggshell Derived Carbonated Apatite Nanocarriers for Combined Anti-Cancer, Anti-Inflammatory and Bone Regenerative Therapy

Author:

Verma Anish H.1,Kumar T. S. Sampath1,Madhumathi K.1,Rubaiya Y.2,Ramalingan Murugan3,Doble Mukesh2

Affiliation:

1. Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India

2. Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India

3. Biomaterials and Stem Cell Engineering Lab, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology (VIT) (Deemed to be University), Vellore 632014, India

Abstract

Bone cancer or osteosarcoma is an aggressive cancer affecting the long bones and is treated by a combination of surgery and chemotherapy. Local drug delivery directly to the site of bone cancer and the use of plant-based drugs has been explored towards improving the efficacy and decreasing the toxicity of the anti-cancer drugs. Curcumin, derived from turmeric is highly effective against cancer cells and shows very low toxicity against normal cells. Bone repair is facilitated by use of bone substitutes such as bioceramics, amongst which the carbonated apatite (CA) nanocarriers closely mimic the natural bone mineral. In the current work, we have developed CA nanocarriers based local delivery of curcumin as an adjunct treatment for bone cancer. CA nanocarriers with 6 wt.% carbonate were prepared by wet chemical synthesis using synthetic derived (6SWCA) and eggshell derived (6EWCA) precursors along with hydroxyapatite (WHA) as a control. The X-ray diffraction (XRD) patterns showed the CAs to be phase pure with a mean crystallite size of 17 nm. The Fouriertransform infrared spectroscopy (FTIR) analysis of both CAs indicated the carbonate substitution as B-Type. The amount of carbonate substitution was observed to be around 6 wt.% using FTIR and CHNO elemental analyzer. The 6EWCA showed a greater loading (36%) and release (66%) of curcumin than 6SWCA and WHA nanocarriers. The bovine serum albumin (BSA) protein denaturation assay showed the curcumin loaded CAs to be highly anti-inflammatory while their anti-cancer activity was confirmed by the high cytotoxic activity against MG-63 human osteosarcoma cells. Conclusively, an eggshell derived apatite drug delivery system was found to be very suitable to cure osteosarcoma, prevent post-cancer inflammation and modulate bone repair and regeneration.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3