Affiliation:
1. Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
2. Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
Abstract
Typical methods used in cancer treatment, including chemotherapy, are debilitating because of the various adverse side effects experienced by cancer patients. The free drug injected into the patient at given doses affects both healthy and cancerous cells. Therefore, novel methods are
being researched to ensure the selectivity of the treatment. The purpose of this study is to test the release of a model fluorescent drug, calcein, from echogenic stealth liposomes, triggered by lowfrequency pulsed ultrasound. Several experimental parameters related to the ultrasound (US)
and the investigated liposomes were varied in order to examine their effect on the acoustic release. Upon analysis of experimental results, the study concluded that release can be maximized by optimizing the sonication frequency, power density, and US pulse duration. When a non-isothermal
chamber is used to conduct the experiments, it is important to have longer ‘Off’ than ‘On’ US periods in order to avoid overheating the liposomes. Applying such pulsation pattern can also be utilized to achieve slower release rates, which safely meet the
desired drug levels at the end of the session. Our study also concluded that optimizing the liposome concentration is vital to delivering desired drug doses. Additionally, the type of lipids used in the synthesis should be carefully selected to produce stable yet acoustically sensitive liposomes
capable of releasing at desired rates.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献