Preparation of Y2O3 Coated CaO Ceramic Cores with Anti-Hydration Performance and High-Interface Stability Against Interface Reaction of Ti–6Al–4V Alloys

Author:

Zhou Pengpeng1,Wu Guoqing1,Butt Faheem K2,Tao Ye1,Zhao Jiaqi3,Nan Hai3

Affiliation:

1. School of Materials Science and Engineering, Beihang University, Haidian District, Beijing 100191, China

2. Physik-Department, Chair of Energy Conversion and Storage, Technische Universität München, D-85748, Garching, Germany

3. Beijing Institute of Aeronautical Materials, Beijing 100095, China

Abstract

In this study, we describe a novel method for preparing Y2O3@CaO ceramic cores with anti-hydration performance and high-interface stability against interface reaction of Ti–6Al–4V alloys. The effect of Y2O3 coating on microstructure, mechanical, anti-hydration properties of ceramic cores and interface reaction with Ti–6Al–4V alloys was studied. The results show that the surface charge of Y2O3 and CaO are opposite at the pH value of 13, which might result in an electrostatic force and become the main driving force of Y2O3 particles absorb on the surface of CaO particles. The Y2O3 coating improved the anti-hydration properties of the CaO-based ceramic cores after sintering at 1450 °C. Meanwhile, the flexural strength improved from 11.2 to 18.8 MPa. At last, the interaction between the ceramic cores and Ti–6Al–4V metal were studied by centrifugal investment casting. Y2O3 coating can effectively reduce the interface reaction and the thickness of the interaction layer in the casting was less than 10 μm. The results suggest that the Y2O3@CaO ceramic with anti-hydration performance provide excellent mechanical and high-interface stability against interface reaction of Ti–6Al–4V alloys.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3