Photocatalytic Degradation of Oxytetracycline by Photosensitive Materials and Toxicological Analysis by Caenorhabditis elegans

Author:

Yu Qiaojie1,Ouyang Tong1,Zhou Kefu1,Chang Changtang2

Affiliation:

1. Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology Xiamen University, Xiamen, 361102, Fujian, China

2. Department of Environmental Engineering, National I-Lan University, I-Lan City 260, Taiwan

Abstract

This study explored a facile one-step hydrothermal method of preparing a high-performance photocatalyst, namely, graphene-TiO2, for oxytetracycline (OTC) removal. The nanocomposites were characterized by Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and X-ray diffraction (XRD). The photocatalytic properties of different graphene loading types and various OTC initial concentrations, temperatures, and initial pH values were investigated. Results showed that the material with 10% graphene content exhibited the best performance and removal efficiency (beyond 99%) of OTC within 180 min at 35 °C and pH 5.5. The effects of different reactive oxygen species scavengers on photodegradation and the contributions were evaluated, and a possible reaction mechanism was proposed. Caenorhabditis elegans was used for toxicity testing during the entire degradation process and achieved a favorable result.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3