Effect of Deposition Potential and Bath Temperature on One-Step Electrochemical Synthesis of One and Two Dimensional Nanostructured ZnO Thin Films on Fluorine Doped Tin Oxide Substrates

Author:

Marimuthu T.1,Anandhan N.1,Thangamuthu R.2,Surya S.2,Panneerselvam R.1,Ganesan K. P.1

Affiliation:

1. Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi 630003, India

2. Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India

Abstract

Different zinc oxide (ZnO) morphologies such as platelets, nanowalls and nanorods were electrochemically synthesized on fluorine doped tin oxide (FTO) substrates by varying the deposition potentials and bath temperatures, respectively. Cyclic voltammetry (CV) curves reveal that ZnO deposition potentials are decreased as the bath temperatures are increased. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images confirm that the synthesized ZnO nanostructures are hexagonal wurtzite structure. The XRD results reveal that the crystallinity of the films is increased when ZnO deposition potentials and temperatures are increased. Field emission scanning electron microscope (FE-SEM) images display platelets, nanowalls and nanorods structures for films synthesized -1.1 V, -1.2 V and -1.3 V respectively. The increase in deposition potential not only increases the growth rate of ZnO with metallic zinc deposition, but also decreases zinc hydroxide chloride hydrate. Fourier transform infrared microscope (FTIR) spectra confirm that the formation of zinc hydroxide (Zn(OH)2) is decreased as the bath temperatures are increased from 30 to 70 °C. Photoluminescence (PL) spectra depict that the crystal quality of the ZnO films are notably improved as the bath temperatures are increased. The film thickness is increased as the deposition potentials and bath temperatures are increased. The dye absorbance is increased with respect to the film thickness. The efficiencies of dye sensitized solar cells (DSSCs) fabricated with diverse morphologies such as platelets, nanowalls and nanorods are found to be 0.10, 0.49 and 0.47%, respectively. Electrochemical impedance spectroscopy (EIS) spectra reveal that the charge transfer recombination resistance (Rrec) is continuously decreased as metal zinc deposition is increased in ZnO films with increase in deposition potentials.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3