Free-Standing Lipid Bilayers Based on Nanopore Array and Ion Channel Formation

Author:

Tan Shengwei1,Zhang Ling2,Yu Lijuan1,Xu Lei1

Affiliation:

1. School of Life Sciences and School of Ocean, Nantong University, Nantong 226019, China

2. School of Biomedical Engineering, Hubei University of Science and Technology, Xian 437100, China

Abstract

Integrated nanopores are novel and versatile single-molecule sensors for individual label-free biopolymer detection and characterization. However, their studies and application requires a stable lipid bilayer to maintain protein function. Herein, we describe a method for producing lipid bilayers across a nanopore array on a silicon nitride substrate. We used a painting technique commonly used with Teflon films to embed α-hemolysin (α-HL) into bilayer lipid membranes (BLMs) to form an ion channel. This was carried out in nanofluid developed in our lab. The membrane formation process, stability of BLMs and ion channel recordings were monitored by patch clamp in real-time. BLM formation was demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore in the range of ±100 mV. Membrane resistance (Rm) and capacitance (Cm) of the device with the bilayer were assessed by membrane test as above 1.0 GΩ and ~20±2 pF, respectively. The silicon nitride surface and aperture edge were smooth at the nanometer lever leading to remarkable membrane stability. The membrane lifetime was 5–24 h. A single α-HL channel inserted in 30–60 min applied a potential of +100 mV. The α-HL channel currents were recorded at ~100±10 pA. Such integrated nanopores enable analysis of channel functions under various solution conditions from the same BLM. This will open up a variety of applications for ion channels including high-throughput medical screening and diagnosis.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3