Imine Bond- and Coordinate Bond-Linked pH-Sensitive Cisplatin Complex Nanoparticles for Active Targeting to Tumor Cells

Author:

Cheng Cui1,Meng Yabin1,Zhang Zhihong1,Chen Jingdi1,Zhang Qiqing1

Affiliation:

1. Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P. R. China

Abstract

Aldehyde hyaluronic acid-cisplatin (A-HA-CDDP) complex nanoparticles were readily prepared, and CDDP was stably loaded into the core of the NPs through imine bond and coordinate bond linkages. The results show that the NPs were prepared successfully by a chemical complexation reaction rather than by physical mixing. Compared to many CDDP and HA complex nanoparticles evaluated in other studies, A-HA-CDDP NPs with imine and coordinate bonds between the A-HA and CDDP displayed better sustained release behavior and pH sensitivity. Therefore, the acidic tumor environment could accelerate the release of CDDP from the NPs. MTT and AO/EB staining assays showed that A-HA-CDDP NPs had comparable cell inhibition with CDDP in HeLa cells as well as little toxicity to NIH3T3 cells. This result indicates that the chemical reaction between A-HA and CDDP had little effect on the antitumor activity of CDDP and that the NPs actively targeted CD44-rich tumor cells. Both a hemolysis test and a protein adsorption assay demonstrated that A-HA-CDDP NPs had good biocompatibility and blood circulation in vivo. Therefore, the NPs have the potential to be used for targeted CDDP delivery in vivo. A subsequent publication will describe the circulation, targeting and tumor inhibition experiments of these NPs in vivo.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3