Photocatalytic Decomposition of N2O Over Ceramics Cordierite/CeO2 Nanoparticles

Author:

Ambrožová Nela1,Edelmannová Miroslava1,Troppová Ivana1,Kocí Kamila1,Valášková Marta2

Affiliation:

1. Institute for Environmental Technology, VŠB-Technical University of Ostrava, 708 33 Ostrava-Poruba, Czech Republic

2. Nanotechnology Centre, VŠB-Technical University of Ostrava, 708 33 Ostrava-Poruba, Czech Republic

Abstract

The study is focused on the testing of the photocatalytic ability to decompose nitrous oxide (N2O) over cordierite/CeO2 nanoparticles ceramic photocatalysts. The activity of ceramic materials was compared with the activity of industrially produced TiO2 (Evonik photocatalyst). Photocatalytic decomposition of N2O over the ceramic samples and the TiO2 Evonik was performed in annular batch reactor illuminated with 8 W Hg lamp (λ ═ 254 nm wavelength). Reaction kinetics was well described by pseudo 1st rate law. Photocatalytic activity of cordierite/CeO2 was better in comparison with TiO2 Evonik P25. The highest N2O conversion (56%) after 20 h of irradiation in inert gas was achieved over the sample with higher amount of CeO2. This photocatalyst sample was examined for photocatalytic activity in the decomposition of N2O in the three various gaseous feed mixtures. The gaseous feed mixtures were: N2O enriched with O2 (6.5 mol.%); N2O enriched with H2O(25 mol.%) and N2O enriched with mixture of O2 and H2O(6.5 mol.% and 25 mol.%, respectively). It is assumed that the reduced conversion of N2O (47%) observed in the flow of the mixture of N2O and H2Ocould be affected by the sorption of water vapor on/onto the photocatalyst “active sites” causing less penetration of light and thus reducing the efficiency of photocatalytic decomposition of N2O. The presence of oxygen in the N2O mixture had only little effect to photocatalytic decomposition of N2O.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3