Rapid Nucleation of Reduced Graphene Oxide-Supported Palladium Electrocatalysts for Methanol Oxidation Reaction

Author:

Ng Jen Chao1,Tan Chou Yong1,Ong Boon Hoong2,Matsuda Atsunori3,Basirun Wan Jefrey4,Tan Wai Kian3,Singh Ramesh1,Yap Boon Kar5

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

2. Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia

3. Department of Electrical & Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan

4. Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

5. Department of Electronics and Communication, College of Engineering, Universiti Tenaga Nasional, Km-7, Jalan Ikram-UNITEN, 43009 Kajang, Selangor, Malaysia

Abstract

Small sized electrocatalysts, which can be obtained by rapid nucleation and high supersaturation are imperative for outstanding methanol oxidation reaction (MOR). Conventional microwave synthesis processes of electrocatalysts include ultrasonication, stirring, pH adjustment, and microwave irradiation of the precursor mixture. Ethylene glycol (EG), which serves as a reductant and solvent was added during the ultrasonication or stirring stage. However, this step and pH adjustment resulted in unintended multi-stage gradual nucleation. In this study, the microwave reduction approach was used to induce rapid nucleation and high supersaturation in order to fabricate small-sized reduced graphene oxide-supported palladium (Pd/rGO) electrocatalysts via the delayed addition of EG, elimination of the pH adjustment step, addition of sodium carbonate (Na2CO3), prior microwave irradiation of the EG mixed with Na2CO3, and addition of room temperature precursor mixture. Besides its role as a second reducing agent, the addition of Na2CO3 was primarily intended to generate an alkaline condition, which is essential for the high-performance of electrocatalysts. Moreover, the microwave irradiation of the EG and Na2CO3 mixture generated highly reactive free radicals that facilitate rapid nucleation. Meanwhile, the room temperature precursor mixture increased supersaturation. Results showed improved electrochemically active surface area (78.97 m2 g−1, 23.79% larger), MOR (434.49 mA mg−1, 37.96% higher) and stability.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3