Deriving a Ultraviolet-Visible-Near-Infrared-Active Photocatalyst from Calcination of an Mg/Zn/Al/Er-Hydrotalcite-Like Compound

Author:

Qin Zhuozhuo1,Liu Wenxia1,Chen Huabin1,Chen Jun1,Li Zhenzhen1

Affiliation:

1. Key Laboratory of Pulp & Paper Science and Technology (Ministry of Education) Qilu University of Technology, Jinan, Shandong 250353, China

Abstract

Developing full-spectrum photocatalysts that harvests solar light from ultraviolet to near-infrared light has aroused great interest in photodegradation of organic pollutants, due to the imminent energy crisis and growing pollution issues. Herein, we report an excellent full-spectrum photocatalyst derived from calcination of an Mg/Zn/Al/Er-hydrotalcite-like compound. The photocatalyst is a stable multi-phase oxide consisting of various syntrophic Er3+-doped metal oxides with different particle sizes and morphology. Its ultraviolet (UV) photocatalytic activity is maximized by increasing the fraction of Zn2+ and sustaining the pure hydrotalcite-like phase with an appropriate fraction of Mg2+ in preparing the Mg/Zn/Al/Er-hydrotalcite-like precursor. The visible and NIR photocatalytic activities are triggered by an indirect excitation involving an up-conversion process. The major active species of the photocatalyst in the photodegradation of methyl orange are superoxide anions and photogenerated holes. Nevertheless, hydroxyl radicals also play a moderate role in the photodegradation process. This work finds a new way to prepare full-spectrum photocatalysts with tunable chemical compositions via an environmentally friendly hydrotalcite-like precursor.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3