Etching Anode Foil with Branch Tunnels for Aluminum Electrolytic Capacitors

Author:

Ban Chao-Lei1,Chen Jian-Hai1,Wang Fang-Ren1,Zhu Shu-Qin2,Liu Zhen-Qi1

Affiliation:

1. School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, China

2. School of Computer Science, Liaocheng University, Liaocheng, 252059, China

Abstract

Al foil for high-voltage aluminum electrolytic capacitor was first D.C. etched in HCl–H2SO4 mixed acidic solution to form main tunnels and then D.C. etched in natural NaCl solution containing 0.1% H2C2O4 and different trace amounts of Zn(NO3)2. Between the two etching processes, Zn nuclei were deposited on the interior surface of the main tunnels by the natural occluded corrosion cell effect to form micro Zn–Al galvanic local cells. The effects of Zn nuclei on the cross-section etching and electrochemical behavior of Al foil were investigated using scanning electron microscopy, polarization curve measurement, and electrochemical impedance spectroscopy. The sub-branch tunnels can form along the main tunnels owing to the formation of Zn–Al micro-batteries, in which Zn is the cathode and Al is the anode. Increasing Zn(NO3)2 concentration increases the number of Zn nuclei that can serve as sites for branch tunnel initiation along the main tunnels, thereby enhancing the specific capacitance of etched Al foil.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3