Kinetics of Light-Driven Oxygen Evolution at Nanostructured Hematite Semiconductor Electrodes

Author:

Schrebler Ricardo1,Ballesteros Luis A1,Gómez Humberto1,Grez Paula1,Córdova Ricardo1,Muñoz Eduardo1,Schrebler Rodrigo2,Sessarego Gustavo1,Martín Francisco3,Ramos-Barrado José R3,Dalchiele Enrique A4

Affiliation:

1. Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2950, Valparaíso, Chile

2. Escuela de Ingeniería Química, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2950, Valparaíso, Chile

3. Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC). Departamento de Física Aplicada & Ing. Química, Universidad de Málaga, E29071 Málaga, Spain

4. Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Julio Herrera y Reissig 565, C. C. 30, 11000 Montevideo, Uruguay

Abstract

Hematite nanostructures have been electrochemically grown by ultrasound-assisted anodization of iron substrates in an ethylene glycol based medium. This hematite nano-architecture has been tuned from a 1-D nanoporous layer (grown onto a bare iron foil substrate) to a high aspect self-organized nanotube one (grown onto a pretreated iron foil). Well-developed hematite nanotube arrays perpendicular to the substrate with a 1 μm in length have been obtained. The nanoporous sample was characterized by pores of a mean diameter of 30 nm and an interpore distance of 150 nm, whereas the self-organized nanotube layer consisted of nanotube arrays with a single tube inner diameter of approximately 50 nm and average spacing of approximately 90 nm. The wall thickness of the hematite nanotubes was of approximately 30 nm. A comparative study of the photoelectrochemical properties of these two different hematite nanostructures under water-splitting conditions have been studied through EIS and PEIS methods. The strong correlation between the CSS increase with the RSS,ct decrease and the photocurrent development as the potential is made more anodic, indicated that holes transfer for the water splitting reaction takes place through the surface states and not directly from valence band holes. From the PEIS spectra the rate constants of the elementary reactions responsible for the competing processes of interfacial charge transfer (ktr and electron–hole recombination (krec have been determined. A better photoresponse kinetic was observed from the hematite nanotubular structure as compared to the nanoporous one. The last indicates that in the hematite nanotubular structure it exists a very well length scale matching between the nanotube wall thickness and the hole diffusion length (maximize light absorption while maintaining the bulk within hole collection length), diminishing then the recombination processes.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3