Affiliation:
1. Department of Neonatology, Obstetrics and Gynecology Hospital in Hangzhou, Shangcheng District, Hangzhou, 310008, Zhejiang, China
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is mainly resulted from perinatal asphyxia, which can be repaired by NSCs. miR-204-5p is claimed to impact the activity NSCs. Our research will probe the miR-204-5p function in oxygen-glucose deprivation (OGD)-treated NSCs. miR-204-5p level
was enhanced and WNT2 level was reduced in HIE rats. Rat NSCs were stimulated with OGD condition under the managing of mimic or inhibitor of miR-204-5p. The declined cell viability, enhanced apoptosis, downregulated Tuj1 and GFAP levels, and shortened total neurite length were observed in
OGD-treated NSCs, which were further aggravated by the mimic and rescued by the inhibitor of miR-204-5p. Furthermore, the inactivated WNT2 and Ephrin-A2/EphA7 signaling pathway in OGD-stimulated NSCs was further repressed by the mimic and rescued by the inhibitor of miR-204-5p. In addition,
WNT2 was confirmed as the targeting of miR-204-5p. Lastly, the function of miR-204-5p mimic on the proliferation, apoptosis, differentiation, WNT2 and Ephrin-A2/EphA7 signaling pathway in OGD-stimulated NSCs was abolished by HLY78, an activator of Wnt signaling. Collectively, miR-204-5p repressed
the growth and differentiation of fetal NSCs by targeting WNT2 to regulate the Ephrin-A2/EphA7 pathway.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering