Green Synthesized Bismuth Oxide Nanoparticles Using Aqueous Rhizome Extract of Curcuma longa Mitigate the Proliferation of Human U87 Glioblastoma Cells by Regulation of the Wnt/β-Catenin Signaling Pathway

Author:

Li Jun1,Ma Junfeng1,Zhou Liang1,Huang Shan1,Sun Jiahua1,Chen Lin1,Lu Zhengrong1

Affiliation:

1. Department of Neurosurgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 20040, China

Abstract

The low biocompatibility of inorganic nanoparticles (NPs) is a main concern in their wide applications in the biomedical field. Therefore, the green synthesis of NPs from plant extracts can provide safe NPs for biomedical applications. The present study was aimed to assess the anticancer activity of bismuth oxide (Bi2O3) NPs fabricated using aqueous plant extracts from the rhizome of Curcuma longa (C. longa). Characterization of green Bi2O3 NPs was done using TEM, DLS, and X-ray diffraction analyses. Selective anticancer activity of green Bi2O3 NPs against human glioblastoma (U87) cells was assessed using MTT, GSH, MDA, ROS, apoptosis, and caspase-3 assays. Also, qPCR analysis was done to explore the expression of β-catenin, cyclin D1, and c-myc at mRNA level as the important genes of the Wnt/β-catenin signaling pathway. The results showed that the green Bi2O3 NPs have a crystalline nature with a size of around 30 nm with good colloidal stability attributed to potential bio-fabrication of Bi2O3 NPs. Cellular study indicated that green Bi2O3 NPs triggered selective anticancer activity against U87 cells through reduction of GSH level and increase of MDA level, ROS level, Annexin+ cells, and caspase-3 activity. Also, it was found that IC50 concentration of biosynthesized Bi2O3 NPs (20 μg/mL) resulted in a significant downregulation in the expression of β-catenin, cyclin D1, and c-myc genes involved in the Wnt/β-catenin signaling pathway. This study concludes that green Bi2O3 NPs bio-fabricated from rhizome of C. longa show potential selective anticancer activity.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3